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When arguments are refuted in mathematics classrooms, the ways in which they are 
refuted can reveal something about the logic of practice evolving in the classroom, as 
well as the epistemology that guides the teachers’ teaching. We provide four 
examples that illustrate refutations related to the logic of practice, in which 
sufficiency and relevance are grounds for refutation, as opposed to falsehood.    
INTRODUCTION 
At first glance, refutations may seem to have little to do with teaching proof. Proofs 
are concerned with showing what conclusions follow from a set of premises, whereas 
refutations only tell use what conclusions do not follow. There are, of course, special 
cases, like proof by contradiction and contraposition, in which one seeks to refute one 
statement in order to prove its negation. However, we are not concerned with these 
cases here. Instead we are interested in the kind of refutations that appear in the 
proving process through which proofs evolve in mathematics classrooms, but which 
are not evident in the finished proof.    
We are interested in these refutations in relation to what Toulmin (1958) calls the 
“logic of practice” which underlies proving processes in classrooms. That is, the logic 
upon which arguments are based in actuality, rather than the logic upon which one 
might like them to be based. As mathematics classrooms are contexts for learning, 
arguments in them are based on a logic in transition, from the everyday logic the 
students bring to the class to a mathematical logic accepted by the teacher.  When 
arguments are refuted, the ways in which they are refuted can reveal something about 
the logic of practice as well as the teachers’ purpose in engaging in argument in the 
first place and what epistemology guides her teaching.     
BACKGROUND 
As Balacheff (2002/2004) notes, the field of mathematics education includes 
approaches based on a number of distinct epistemologies. The role seen for 
refutations depends on epistemological factors. For example, for those whose focus is 
on the logical correctness of formal texts called “proofs”, refutations do not play a 
role except perhaps in the special cases of proofs by contradiction and contraposition. 
Others’ epistemology is based to some extent on Lakatos’ (1976) view of 
mathematics, in which mathematics does not proceed by a process of proving 
theorems conclusively and then moving on, but rather through a cycle of proofs and 
refutations, with proofs being always provisional and refutations providing the 
mechanism for the improvement of theorems and their proofs.  For those with this 
epistemology, proof is inextricably linked to refutations, and approaches to teaching 
proof from this perspective include an exploration of refutations as an essential 
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element (e.g., Balacheff 1988, 1991, Sekiguchi 1991). Another epistemology for 
which proofs are essential is that founded on the concept of “cognitive unity” in 
which argumentation processes which may include refutations provide the basis for 
proof development (e.g., Boero, Garuti, Lemut & Mariotti 1996). Studying the role of 
refutations in classroom proving processes is important if one takes on an 
epistemology that gives an important role to refutations (e.g., one based on Lakatos 
or cognitive unity) but also for descriptive and comparative work looking at current 
teachers’ practices, as a way to reveal the implicit epistemologies guiding teaching. It 
is such an interest in teaching practices that inspires our work. In classrooms we 
observe a proving process through which teacher and students produce a proof, and 
which can include refutations in important ways. In this paper we will describe a 
number of examples of refutations embedded in proving processes, their roles in 
those processes and what these roles suggest about the teaching practices and implicit 
epistemologies underlying them. 
One of Toulmin’s (1958) aims is to describe the layout of 
arguments in a way that is independent of the field in which 
they occur. In this paper we diagram arguments using a 
method derived from Toulmin’s basic layout for an 
argument (see Figure 1). In this layout an argument is 
considered to consist of data, which lead to a conclusion, 
through the support of a warrant.   
Toulmin does not consider refutations within this structure because he is considering 
arguments as they are once the assertion is established, not the process of their 
coming to be. However, Toulmin’s first chapter deals extensively with refutations in 
order to explore how arguments in different fields are based on different criteria.  
There he gives examples of arguments in which an assertion is made which is true in 
one field but which can be refuted in another field. 
Looking at Toulmin’s basic layout three ways in which an argument can involve a 
refutation immediately suggest themselves. The data of the argument can be refuted, 
leaving the conclusion in doubt. The warrant of the argument can be refuted, again 
leaving the conclusion in doubt. Or the conclusion itself can be refuted, implying that 
either the data or the warrant is invalid, but not saying which. In the language of 
Lakatos (1976 pp. 10-11) the first two are local counterexamples, while the latter 
type is a global counterexample. Sekiguchi (1991) provides examples in a classroom 
context of several types of refutations within this framework. However, as we noted 
above, we are more interested in refutations where the focus of the refutation is not 
the data, conclusion or warrant, but rather the logic underlying the argument.  
REFUTATION IN CLASSROOM ARGUMENTS 
In our research* we have examined classroom arguments at upper elementary and 
junior high school, in Canada, Germany and France. In these contexts refutations 
sometimes occur, but in different forms and with different functions. Here we provide 
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Figure 1. Toulmin’s 
basic layout. 
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four examples along with discussion of the insight each gives us into the logic of 
practice, and the teacher’s epistemology.  
Refutation of a conclusion implied by a question 
The conclusion that is refuted may not always be stated directly.  In classrooms a 
common exchange is for the teacher to ask a question with the intent of pointing out 
an error. For example, in this exchange grade 5 students have been trying to develop 
a formula for how many squares there are in an n by n grid. They have been working 
with a concrete model in which three pyramids made of linking cubes are joined to 
make a roughly box shaped solid made up of n½, n by (n+1) layers. Here they are 
considering a 10 by 10 grid for which the solid has 10.5, 10 by 11 layers. They have 
multiplied these three numbers to find the total number of linking cubes used: 1155.  
(DAR is a guest teacher. For more background and details see Zack 2002, Zack & 
Reid 2003, 2004, and Reid 2002). 

DAR:  Right.  So, 1155 is what you get if you multiply those three 
numbers. 

 Is that [1155] how many squares there are in a 10 by 10 [grid]? Q 
Several voices: No            A 
 

 
Here the question “Is that [1155] how many squares there are in a 10 by 10 [grid]?” 
implies the conclusion “1155 is … how many squares there are in a 10 by 10 [grid]” 
which the answer “No” refutes. This answer requires no further support as the 
students and DAR are all aware that there are 385 squares in a 10 by 10 grid. The 
jagged arrow in the layout (see Figure 2) indicates a refutation.  
In terms of the final structure of the argument the statement “1155 is … how many 
squares there are in a 10 by 10 [grid]” plays no role, as it is false. Even its negation 
“1155 is not … how many squares 
there are in a 10 by 10 [grid]” is not 
important to the final argument. 
However, in the proving process it is an 
important statement, as the students 
have arrived at a point where they 
might expect 1155 to be the answer (as 
DAR has guided them to this result 
ostensibly to find a formula that works) 
but at the same time they know from 
counting previously the correct answer 
is 385. This tension offers a motivation 
for further exploration of why the 
product of the three numbers in 
question is not the expected answer.    

Q

A

Figure 2

Figure 3. Refutation of sufficiency (B1a 
and B1b are backings supporting the 

warrant).   
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Refutation of the sufficiency of a warrant, while accepting the data and the 
conclusion 
In the previous example, no warrant was offered to justify the connection between the 
data and the conclusion. In this example, a warrant is offered, but it is not the warrant 
that is refuted, but the sufficiency of it to establish the connection between the data 
and the conclusion. The example comes from a grade 9 class which is trying to 
explain why if two diagonals of a quadrilateral meet at their midpoints and are 
perpendicular, then the quadrilateral must be a rhombus.  

Kaylee: umm, I said cause if they meet, if 
they meet at the midpoint, they meet at the midpoint and they're ninety
degree angles  
then umm, then, it would have to be — the [???] — then the sides, they 
have to be ummm, like  
outsides have to be equal lengths.  

D1
  
 
 
 C1

T: Why? 
Kaylee: Be, ummm, because they meet at, 

they all meet at ninety degree angles and at the midpoint,  
but the segments are different lengths, then  
it can't be a square,  
because squares they have to be the same length -

D1
D2
C2

W2
T: //K, but// 
Kaylee: //so it has to be a rhombus// C1
T: Could it be a rectangle? Could it be a parallelogram? 
S: If it — If none — 
T: Cause there are other ones, 

like the rectangle one met at the midpoint. It didn't meet at a ninety
degree angle though.  
And then the rhombus we covered.  
The one that made a kite met at a ninety degree angle, it didn't meet at the
midpoint.  
You're on the start, but I'm not sure that you've clinched it, I'm not sure
you've got that final part, but you've got — you're three quarters of the 
way there my dear. 

R1
B1a

  
B1b

Kaylee’s warrant is a correct statement. Figures with perpendicular bisecting 
diagonals are not generally squares, as squares have the additional characteristic that 
their diagonals are the same length. However, the teacher’s objection is not to the 
truth of Kaylee’s warrant but to its sufficiency. As the teacher notes, there are other 
quadrilaterals that have not been considered and excluded. Although she excludes 
rectangles and kites from consideration at the same time she uses them to back up her 
refutation, her point is made: other quadrilaterals, other than squares and rhombuses, 
exist, and so excluding squares is not sufficient to guarantee the shape must be a 
rhombus. Here the refutation is directed at the warrant, but does not refute it (as it is 
correct). Instead it suggests that the warrant is insufficient in the logic the teacher 
expects mathematical arguments to follow. By offering an argument of her own 
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refuting the sufficiency of Kaylee’s warrant the teacher provides that students with a 
hint as to the logic she would accept as mathematical.  
Refutation of the relevance of data offered in support of a conclusion 
In the previous case the refutation addressed the sufficiency of the warrant, but it is 
also possible to refute the relevance of the data offered. This example also comes 
from the grade 5 class looking for a formula for how many squares there are in an n 
by n grid. The students have suggested that by dividing 1155 by three, they can get 
the correct answer of 385. 

 

DAR: Could we have somebody … suggest a reason why 
we might want to divide by three 
 – Mona? 

C1 

Mona: Because there’s three numbers D1 
DAR: Because there’s three numbers.  That’s a good reason
Mona: I guess 
DAR: OK –  

It’s not a great reason,  
but it’s a good reason.   
[Calls on another student] 

R1 
 
R1 

 

D1 C1

R1  
Figure 4. 

Refutation       
of relevance. 

Here the teacher’s refutation is an implicit one. His qualified support (“not a great 
reason but it’s a good reason”) and shift of attention away from Mona’s response 
communicates to the class that there is something wrong with what she has said, 
without specifying exactly what. Neither the data nor the conclusion is refuted (as the 
class knows them both to be true statements), and there is no suggestion that the lack 
of a warrant in Mona’s argument is the issue (as would be suggested by the teacher 
asking “Why would we divide by three when there are three numbers?”). Instead the 
focus is on the relationship between the facts, not on the facts themselves. It is the 
unspoken logic of the argument that is refuted. Mona has made a link between two 
statements, but not in a way that wins acknowledgment from the teacher. Note that 
here the teacher’s refutation is based only on his authority (one of Sekiguchi’s 1991 
categories) and unlike the teacher’s refutation in the previous case it does not offer 
any guidance for what might be an acceptable link. Instead he has the students guess 
until they come up with something acceptable.  
A complex refutation 
This example follows immediately after 
the previous one. The students have 
been working with a concrete model in 
which three pyramids are joined to 
make a roughly box shaped solid made 
up of n½, n by (n+1) layers.  
 

Figure 5. A complex refutation (C1 is 
the conclusion from Figure 4.). 

D1 C1

D2 C2

D3

W1
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Elaine: Because there’s three of those triangle thingies in there D1
Maya:  But then why wouldn’t you divide it by three and a half,  

because there’s a  half? 
C2
D2

DAR: OK how many triangles did we put together to make this thing? D1
Several 
voices: 

 
Three 

 
D1

Maya: And then there’s the half   
DAR: …  So then we put together three of them  

and suddenly  
we had three times too many, —  
so that would be a good reason to divide by three if you’ve got three times 
too many of something.  

D1
 
D3
W1

Here Elaine is trying to answer the question “why might we divide by three?” The 
data she uses to justify this refers to the three pyramids (“triangle thingies”) in the 
box. But she does not offer a warrant to support the connection of this data to the 
conclusion. Maya’s refutation consists of a parallel argument, which also makes 
reference to elements visible in the box (the three pyramids and the half layer). Her 
refutation is again on the level of the logic of the argument. By making an argument 
on the basis of a coincidence or analogy (one half is just as much a property of the 
box as three is) that leads to a false conclusion, she refutes Elaine’s use of similar 
reasons. DAR then supports Elaine and in so doing implicitly refutes Maya’s 
refutation. He provides a warrant for Elaine’s original argument, in the process 
supplying a linking piece of data that shifts the logic of the argument from analogy 
(three thingies, so divide by three) to deduction (three times too many, so divide by 
three). 
Maya’s refutation offers a challenge not only to Elaine’s argument but also to the 
teacher’s practice. He refuted Mona’s argument (above) by simply asserting his 
authority. If Maya had not refuted Elaine’s argument, he might have used his 
authority again to endorse it and moved on. In order to refute Maya’s refutation, he 
had to recast Elaine’s argument into a more complete (and less refutable form) 
including reference to a new piece of data (D3: we had three times too many) and a 
warrant (W1) to support the drawing of the conclusion from it. This made the kind of 
logic he considered acceptable much more explicit.  
CONCLUSION 
These four examples illustrate some of the insights an examination of refutation in 
proving processes can provide, both into the nature and evolution of the logic of 
practice operating and into teaching practices and epistemologies related to proof.  
By drawing attention to the insufficiency of a warrant or data (as in the second and 
third examples) or forcing the teacher to be more explicit about his implicit criteria 
for acceptable arguments (as in the fourth example) refutations provide hints as to 
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what is the teacher’s accepted logic. These hints are of value to students learning to 
shift from everyday arguments to mathematical arguments, as well as to us as 
researchers interested in this process.  
We can also get insight into teaching practice from refutations. The first example, of 
a teacher using a refutation to provide motivation for further exploration, suggests an 
epistemology compatible with a Lakatosian view of mathematics as improving 
though confronting conclusions with counterexamples. The third and fourth examples 
reveal a teacher relying on authority as a means of refutation, suggesting an approach 
to teaching proving that relies on examples and non-examples as much as or more 
than direct modelling.   
We believe that such research can provide insight into actual practice of teaching 
proof, which is necessary to any program of reform, as well as any comparison of 
approaches.  
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